Nachwuchsforscherin der TUM optimiert Herstellungsverfahren von Hochvolt-Kathoden

104
Dr. Jennifer Ludwig, Mitarbeiterin der Professur fuer Synthese und Charakterisierung innovativer Materialien der TU Muenchen, hat ein neues Herstellungsverfahren fuer Lithium-Kobaltphosphat entwickelt.
Quelle: Andreas Battenberg / TUM

Ein pinkes Pulver, das aus Lithium-Kobaltphosphat besteht, könnte Akkus zukünftig leistungsstärker machen. Ein Verfahren, mit dem sich das vielversprechende Hochvolt-Kathodenmaterial schnell, mit geringem Energieaufwand und in bester Qualität herstellen lässt, hat die Nachwuchswissenschaftlerin Jennifer Ludwig von der Technischen Universität München (TUM) entwickelt. „Das Lithium-Kobaltphosphat kann erheblich mehr Energie speichern als herkömmliche Kathodenmaterialien“, sagte sie. Wie die TUM mitteilte, erhielt die Chemikerin für ihre Arbeit den Evonik Forschungspreis.

Lithium-Kobaltphosphat gilt unter Batterieforschern seit einiger Zeit als Material der Zukunft. Es arbeitet bei höherer Spannung als das bisher verwendete Lithium-Eisenphosphat und erreicht daher eine höhere Energiedichte – 800 Wattstunden pro Kilogramm statt bisher knapp 600 Wattstunden. Bisher war die Herstellung des vielversprechenden Hochvolt-Kathodenmaterials jedoch aufwändig, energieintensiv und wenig effizient: Man benötigte drastische Bedingungen mit Temperaturen von 900 Grad.

Bisherige Verfahren sind teuer und energieaufwendig

„Die Kristalle, die sich unter diesen extremen Bedingungen bilden, sind zudem unterschiedlich groß und müssen in einem zweiten energieintensiven Schritt erst zu nanokristallinem Pulver vermahlen werden“, so Ludwig. Die entstehenden Körnchen besitzen zudem nur in einer Richtung genügend ionische Leitfähigkeit. Auf dem größten Teil der Oberfläche läuft die chemische Reaktion zwischen Elektrodenmaterial und Elektrolyt im Akku nur schleppend ab.

Die von Jennifer Ludwig entwickelte Mikrowellen-Synthese löst all diese Probleme auf einen Schlag: Für die Gewinnung von hochreinem Lithium-Kobaltphosphat benötigt man nur ein kleines Mikrowellen-Gerät und eine halbe Stunde Zeit. Die Reagenzien werden zusammen mit einem Lösungsmittel in einem Teflon-Behälter erhitzt. Gerade einmal 600 Watt Leistung reichen aus, um die notwendige Temperatur von 250 Grad zu erzeugen und die Kristallbildung anzuregen.

Die sich dabei bildenden flachen Plättchen haben einen Durchmesser von weniger als einem Mikrometer, eine Dicke von wenigen hundert Nanometern, und die Achse höchster Leitfähigkeit ist in Richtung Oberfläche orientiert. „Diese Form sorgt für eine bessere elektrochemische Leistungsfähigkeit, weil die Lithium-Ionen nur kurze Wege im Kristall zurücklegen müssen“, erläutert Ludwig.

Gezielte Steuerung der Reaktion

Und noch ein weiteres Problem konnte die Chemikerin bei ihren Experimenten lösen: Bei Temperaturen von über 200 Grad und unter hohem Druck entsteht mitunter nicht das gewünschte Lithium-Kobaltphosphat, sondern ein bisher unbekanntes, komplexes Kobalt-Hydroxid-Hydrogenphosphat. Ludwig gelang es, den Reaktionsweg aufzuklären, die chemische Verbindung zu isolieren und dessen Struktur und Eigenschaften zu bestimmen. Da die neue Verbindung als Batteriematerial ungeeignet ist, modifizierte sie die Reaktionsbedingungen so, dass nur das gewünschte Lithium-Kobaltphosphat entsteht.

„Mit dem neuen Herstellungsverfahren können wir nun in einem einzigen Prozessschritt die leistungsfähigen, plättchenförmigen Lithium-Kobaltphosphat-Kristalle maßgeschneidert und in hoher Qualität herstellen“, sagte Professor Nilges, Inhaber der Professur für Synthese und Charakterisierung innovativer Materialien, über die Ergebnisse seiner Mitarbeiterin. „Damit ist eine weitere Hürde auf dem Weg zu neuen Hochvolt-Materialien überwunden.“

Unterstützt wurde Jennifer Ludwigs Arbeit von der TUM Graduate School, BMW, sowie dem Fonds der Chemischen Industrie. Die Untersuchung elektrochemischer Eigenschaften erfolgte in Kooperation mit dem Lehrstuhl für Technische Elektrochemie der TU München. Struktur und Eigenschaften des komplexen Kobalt-Hydroxid-Hydrogenphosphats wurden in Zusammenarbeit mit dem Lawrence Berkeley National Laboratory (LBNL), der Stanford Synchrotron Radiation Lightsource (SSRL) und dem Walther-Meißner-Institut (WMI) untersucht.

Aktuelle Nachrichten zu “Lithium-Ionen-Akku”:

HINTERLASSEN SIE EINE ANTWORT

Bitte Kommentar einfügen!
Bitte geben Sie Ihren Namen hier ein